
Small oscillations and the Heisenberg Lie algebra

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys. A: Math. Theor. 40 2407

(http://iopscience.iop.org/1751-8121/40/10/011)

Download details:

IP Address: 171.66.16.108

The article was downloaded on 03/06/2010 at 05:02

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/40/10
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 40 (2007) 2407–2424 doi:10.1088/1751-8113/40/10/011

Small oscillations and the Heisenberg Lie algebra

Gabriela Ovando
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Abstract
The Adler–Kostant–Symes scheme is used to describe mechanical systems
for quadratic Hamiltonians of R

2n on coadjoint orbits of the Heisenberg Lie
group. The coadjoint orbits are realized in a solvable Lie algebra g that admits
an ad-invariant metric. Its quadratic induces the Hamiltonian on the orbits,
whose Hamiltonian system is equivalent to that on R

2n. This system is a Lax
pair equation whose solution can be computed with the help of the adjoint
representation. For a certain class of functions, the Poisson commutativity on
the coadjoint orbits in g is related to the commutativity of a family of derivations
of the (2n+1)-dimensional Heisenberg Lie algebra hn. Therefore the complete
integrability is related to the existence of an n-dimensional abelian subalgebra
of certain derivations in hn. For instance, the motion of n-uncoupled harmonic
oscillators near an equilibrium position can be described with this setting.

PACS numbers: 45.20.Jj, 02.20.Uw
Mathematics Subject Classification: 70G65, 70H05, 70H06, 22E70, 22E25

1. Introduction

A quadratic Hamiltonian is a function of the form

H(x) = 1
2 (Ax, x) (1)

where x = (q1, . . . , qn, p1, . . . , pn) is a vector in R
2n written in a symplectic basis and A is

a symmetric linear operator with respect to the canonical inner product ( , ). The Hamiltonian
equation has the form

x ′ = JAx, where J =
(

0 −Id

Id 0

)
(2)

with Id denoting the identity.
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In particular, the motion of n uncoupled harmonic oscillators can be approximated by a
quadratic Hamiltonian H as in (1) with A = Id, explicitly H(x) = 1

2

∑
i

(
p2

i + q2
i

)
, where

qi denote the position coordinates and pi = q̇i are the canonical momentum coordinates.
Then (2) yields the equations of motion, which predict the position and the velocity at any
time if initial conditions qi(t0), pi(t0) = q̇i (t0) are known.

In quantum mechanics a good approach to the simple harmonic oscillator is through the
Heisenberg Lie algebra. In dimension three, this is the Lie algebra generated by the position
operator Q = multiplication by x, the momentum operator P = −i d

dx
and 1 with the only

non-trivial commutation relation

[Q,P ] = 1.

These operators evolve according to the Heisenberg equations

dP

dt
= −Q

dQ

dt
= P.

The theory of p-mechanics makes use of the representation theory of the Heisenberg
Lie group to show that both quantum and classical mechanics can be derived from the same
source (see, for instance, [Ki1, Ki2, Br1, Br2]). This theory constructs a more general setting
that unifies both quantum and classical mechanics. The starting point for p-mechanics is the
method of orbit of Kirillov [K1, K2], which says that the orbits of the coadjoint representation
of the Heisenberg Lie group parametrize all unitary irreducible representations [F]. Thus
noncommutative representations are known to be connected with quantum mechanics. In
contrast, commutative representations are related to classical mechanics in the observation
that the union of one-dimensional representations naturally acts as the classical phase space
in p-mechanics. In this theory the time evolution of both quantum and classical mechanics
observables can be derived from the time evolution of p-observables, chosen as particular
functions or distributions on the Heisenberg Lie group.

In this work we shall also make use of the coadjoint orbits of the (2n + 1)-dimensional
Heisenberg Lie algebra hn to do an approach to systems associated with quadratic Hamiltonians
of the form (1) in classical mechanics. This will be done through the Adler–Kostant–Symes
(AKS) scheme, which brings together a mathematical framework with Lie theory but also
consequences in the dynamics of the Hamiltonian system. This method was successful when
studying some mechanical systems such as the rigid body or the generalized Toda lattice
[A, Ko2, Sy, R2]. In this setting coadjoint orbits are represented on a Lie algebra and ad-
invariant functions play an important role. On the one hand, the corresponding Hamiltonian
systems become a Lax equation and, on the other hand, they are in involution on the orbits.
Whenever studying Poisson commuting conditions the ad-invariance property can be replaced
by a weaker one as in [R1]. In the framework of this theory, what we need is a Lie algebra
with an ad-invariant metric, a splitting of this Lie algebra into a direct sum as vector subspaces
of two subalgebras and a given function. These algebraic tools were used with semisimple
Lie algebras, where the Killing form is the natural candidate for the ad-invariant metric.

However, there are more Lie algebras admitting an ad-invariant metric. For our purposes
we are interested in the solvable ones. They can be constructed by a double extension
procedure, whose more simple application follows from R

m. We get a solvable Lie algebra g,
which results a semidirect extension of the (2n + 1)-dimensional Heisenberg Lie algebra hn

and which can be endowed with an ad-invariant metric which is an extension of the bilinear
form on R

2n given by b(x, y) = (Ax, y) if ( , ) is the canonical inner product on R
2n and A

is a non-singular symmetric transformation. The set of symmetric maps A is in a bijective
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correspondence with the derivations of the Heisenberg Lie algebra acting trivially on the
centre, a set denoted with d. Any such derivation allows a semidirect extension g that admits
an ad-invariant metric.

The Lie algebra g splits naturally as a direct sum of vector spaces of a one-dimensional
Lie algebra and the Heisenberg ideal. Looking at the coadjoint orbits of the Heisenberg Lie
group on g via the metric, one gets Hamiltonian systems on these orbits. These orbits are
of two types: they are diffeomorphic to R

2n or they are single points. In particular, for the
restriction of the quadratic corresponding to the ad-invariant metric we obtain a Hamiltonian
system equivalent to (1) on orbits of maximal dimension. Since the considered function is
ad-invariant, the system becomes a Lax equation whose solution can be computed with the
Adjoint representation.

As an example we work out the linear equation of motion of n-uncoupled harmonic
oscillators. The Lie algebra g is known as a oscillator Lie algebra and the corresponding
ad-invariant metric is Lorentzian. This Lie algebra belongs to the exclusive class of Lie
algebras admitting an ad-invariant Lorentzian metric. The quadratic for this metric induces
the Hamiltonian system on the orbits, whose solutions are bounded. Furthermore, it is proved
that the Hamiltonian is completely integrable on all maximal orbits. We notice that the
functions in involution we are making use of are not ad-invariant, and they do not satisfy the
involution conditions of [R1].

Going back to the general case, we study involution conditions on the orbits for a class
of quadratic functions which are not ad-invariant in g in general. They are functions of the
form (1) extended to g. The Poisson commutativity conditions we get for these functions can
be read off in the Lie algebra of derivations of hn. If the centralizer of JA in d (J as in (2)
and A as above) contains an n-dimensional abelian subalgebra, then function (1) is completely
integrable on R

2n whose related one on g is completely integrable on all orbits. This reduces
the complete integrability of these systems to algebraic conditions on sp(n), the Lie algebra
of derivations of hn acting trivially on the centre. Applying the results of Lie theory, one
can see that many of these Hamiltonians are completely integrable. One needs to study the
abelian subalgebras of sp(n). In particular, for the case of the motion of n-uncoupled harmonic
oscillators we need an abelian subalgebra in the Lie algebra of isometries of the Heisenberg
Lie group Hn, endowed with its canonical inner product.

This is not surprising if we consider that symplectic automorphisms of the Heisenberg
Lie group produce symplectic symmetries of p-mechanical, quantum and classical dynamics
for more general systems than the linear ones (see [Ki2, Br1]).

Finally, let us say that to motivate the results we are exposing here it is useful to think in
going in the reverse order from quantum mechanics to classical one and in this way to see a
branch of coincidences with many theories, just by considering the Lie algebra generated by
the position, momentum and energy observables.

2. Preliminaries

Let G be a finite dimensional Lie group with Lie algebra g and exponential map exp : g → G.
Let us introduce a kind of Lie algebras we shall work with. For each integer i � 1 define

gi = [g, gi−1], where g0 = g. The Lie algebra g is nilpotent if gi = 0 for some positive integer
i. It is said k-step nilpotent if gk = 0 but gk−1 �= 0. If G is the unique simply connected
nilpotent Lie group corresponding to a given nilpotent Lie algebra g, then the exponential map
exp : g → G is a diffeomorphism [Ra].
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Example 2.1. The Heisenberg Lie algebra is an example of a two-step nilpotent Lie algebra,
whose Lie group is called the Heisenberg Lie group Hn. It can be constructed on R×R

n ×R
n

with the canonical topology and with the product

(x0, x, y)(x ′
0, x

′, y ′) = (
x0 + x ′

0 + 1
2 (x · y ′ − y · x ′), x + x ′, y + y ′), (3)

where x, x ′, y, y ′ ∈ R
n and x0, x

′
0 ∈ R. The identity element coincides with the origin

0 = (0, 0, 0). Hn is noncommutative and its centre Z(Hn) is the set of elements (x0, 0, 0)

with x0 ∈ R. Thus H
n/Z(Hn) � R

2n in the sense that every class is determined by the last
two components (x, y) and the product in the quotient group coincides with the sum on R

2n.
The left invariant vector fields at a point on R

2n+1 are

X0 = ∂

∂x0
, Xj = ∂

∂xj

− yj

2

∂

∂x0
, Yj = ∂

∂yj

+
xj

2

∂

∂x0
.

It is easy to verify the Lie bracket relations:

[Xi, Yj ] = δijX0.

Let hn be the Heisenberg Lie algebra of dimension 2n + 1, which is the Lie algebra of left
invariant vector fields on Hn and which coincides with T0(H

n). Define a definite metric on
T (Hn) so that the vectors Xi, Yj ,X0 are orthonormal for all i, j = 1, . . . , n. Then this metric
is left invariant and can be transported to the quotient space Hn/Z(Hn). The induced metric
coincides with the canonical one on R

2n.
In the following section we shall see another construction of the Heisenberg Lie algebra

with the help of the Poisson bracket on R
2n.

Another class of Lie algebras (groups) is constituted by the solvable ones. Define ideals
Di(g) in g by Di(g) = [Di−1(g),Di−1(g)], where D0(g) = g. The solvable Lie algebras are
those for which there exists an integer k such that Dk(g) = 0. In solvable Lie algebras the
commutator C(g) = [g, g] is a nilpotent ideal.

Let M be a smooth manifold and φ : G × M → M be a smooth action of G on M. The
vector fields on M

X̃(m) = d

dt |t=0
φ(exp tX,m) m ∈ M, X ∈ g, t ∈ R

will denote the infinitesimal generators of this action. If G · m = {φ(g,m), g ∈ G} denotes
the G-orbit through m ∈ M its tangent space is the set

Tm(G · m) = {X̃(m)/X ∈ g}.
Here we also make use of the notation g · m = φ(g,m). The following actions are

important in our setting:

• The adjoint action Ad : G × g → g whose infinitesimal generators are X̃ = adX, where
adXY = [X, Y ] denotes the Lie bracket of X, Y ∈ g.

• The coadjoint action of G on g∗ is the dual of the adjoint action and it is given by
g → Ad∗(g−1), for g ∈ G, whose infinitesimal generator is X̃ = −ad∗

X.

The coadjoint orbits are examples of symplectic manifolds. Recall that they are endowed
with the Kirillov–Kostant–Souriau symplectic structure given by

ωβ(X̃, Ỹ ) = −β([X, Y ]), β ∈ G · µ.

Assume now that g has an ad-invariant metric 〈 , 〉 : g×g → R;, that is, 〈 , 〉 is a non-degenerate
symmetric bilinear form for which the adjoint representation is skew symmetric. This gives rise
to a bi-invariant pseudo-Riemannian metric on the Lie group G with Lie algebra g; bi-invariant
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means that the maps Ad(g) are isometries for all g ∈ G. Then 〈 , 〉 induces a diffeomorphism
between the adjoint orbit G · X and the coadjoint orbit G · �X where �X(Y ) = 〈X, Y 〉.

Recall that given a metric 〈 , 〉 on g the gradient of a function f : g → R at the vector
X ∈ g is defined by

〈∇f (X), Y 〉 = dfX(Y ) y ∈ g.

Suppose that the Lie algebra g admits a splitting

g = g+ ⊕ g−
as a direct sum of linear subspaces, where g+, g− are subalgebras of g. Then the Lie algebra g

also splits as g = g⊥
+ ⊕ g⊥

−, where g⊥
± is isomorphic as vector spaces (via 〈 , 〉) to g∗

∓. Let G−
denote a subgroup of G with Lie algebra g−. Then the coadjoint action of G− on g∗

− induces
an action of G− on g⊥

+ :

g− · X = πg⊥
+
(Ad(g−)X) g− ∈ G−, X ∈ g⊥

+ ,

where πg⊥
+

denotes the projection of g on g⊥
+ . Thus the infinitesimal generator corresponding

to X− ∈ g− is

X̃−(Y ) = πg⊥
+
([X−, Y ]) Y ∈ g⊥

+ .

The orbit G− · Y becomes a symplectic manifold with the symplectic structure given by

ωX(Ũ−, Ṽ−) = 〈X, [U−, V−]〉 for U−, V− ∈ g−, X ∈ G− · Y

which is induced by the Kostant–Kirillov–Souriau symplectic form on the coadjoint orbits
in g∗

−.
Consider the restriction of the function f : g → R to an orbit G− · X := M ⊂ g⊥

+ .
Then the Hamiltonian vector field of H = f|M is the infinitesimal generator corresponding to
−∇f− , that is

XH (Y ) = −πg⊥
+
([∇f−(Y ), Y ]) (4)

where Z± denotes the projection of Z ∈ g with respect to the decomposition g = g+ ⊕ g−. In
fact for Y ∈ g⊥

+ , V− ∈ g− we have

ωY (Ṽ−, XH ) = dHY (Ṽ−) = 〈∇f (Y ), πg⊥
+
([V−, Y ])〉 = 〈∇f−(Y ), [V−, Y ]〉

= 〈Y, [∇f−(Y ), V−]〉 = ωY ( ˜∇f−(Y ), Ṽ−).

Since ω is non-degenerate, one gets (4). Therefore the Hamiltonian equation for x : R → g

follows

x ′(t) = −πg⊥
+
([∇f−(x), x]). (5)

In particular if f is ad-invariant then 0 = [∇f (Y ), Y ] = [∇f−(Y ), Y ] + [∇f+(Y ), Y ]. Since
the metric is ad-invariant

[
g+, g

⊥
+

] ⊂ g⊥
+ and thus equation (5) takes the form

x ′(t) = [∇f+(x), x] = [x,∇f−(x)], (6)

hence (5) becomes a Lax equation, that is, it can be written as x ′ = [P(x), x].
If we assume now that the multiplication map G+ × G− → G, (g+, g−) → g+g−, is a

diffeomorphism, then the initial value problem


dx

dt
= [∇f+(x), x]

x(0) = x0

(7)

can be solved by factorization. In fact if exp t∇f (x0) = g+(t)g−(t), then x(t) = Ad(g+(t))x0

is the solution of (7).
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Remark. If the multiplication map G+ × G− → G is a bijection onto an open subset of G,
then equation (5) has a local solution in an interval (−ε, ε) for some ε > 0.

Recall that the Poisson bracket on C∞(g) is given by

{f, h}(X) = 〈X, [∇f (X),∇h(X)]〉
which is the Poisson bracket associated with the symplectic form on the adjoint orbits (the
structure is induced via the metric from the coadjoint orbits).

A first step in the construction of action angle variables is to search for functions which
Poisson commute. The Adler–Kostant–Symes theorem shows a way to get functions in
involution on the orbits M. We shall formulate it in its classical Lie algebra setting.

Theorem 2.2. Let g be a Lie algebra with an ad-invariant metric 〈 , 〉. Assume g−, g+ are
Lie subalgebras such that g = g− ⊕ g+ as direct sum of vector subspaces. Then any pair of
ad-invariant functions on g Poisson commute on g⊥

+ (resp. on g⊥
−).

Sometimes the ad-invariant condition is too strong, so the following version of the previous
theorem given by Ratiu [R1] asks for a weaker condition.

Theorem 2.3. Let g be a Lie algebra carrying an ad-invariant metric 〈 , 〉. Assume it admits
a splitting into a direct sum as vector spaces g = g+ ⊕ g−, where g+ is an ideal and g− is a
Lie subalgebra. If f, h are smooth Poisson commuting functions on g, then the restrictions of
f and h to g⊥

+ are in involution in the Poisson structure of g⊥
+ .

Remark 2.4. This theorem was used in [R2] to prove the involution of the Manakov integrals
for the free n-dimensional rigid body motion.

2.1. The motion of n harmonic oscillators

We shall apply the algebraic scheme of the previous section to the motion of n uncoupled
harmonic oscillators. This will be done with a solvable Lie algebra g known as an oscillator
Lie algebra, which can be endowed with an ad-invariant metric. This Lie algebra admits a
splitting into a direct sum as vector spaces of two subalgebras. One of them is the Heisenberg
Lie algebra, whose corresponding Lie group acts on the coadjoint orbits, included on g via
the ad-invariant metric on g. We choose a certain function and we realize the corresponding
Hamiltonian system on the coadjoint orbits. The system is clearly equivalent to the linear one
that approximates the motion of n uncoupled harmonic oscillators. Moreover, we can show
the complete integrability of the Hamiltonian on all maximal orbits.

The motion of n uncoupled harmonic oscillators can be approximated by a quadratic
Hamiltonian H as in (1) with A = Id, that is,

H = 1

2

∑
i

(
p2

i + q2
i

)
(8)

where qi denote the position coordinates and pi = q̇i are the canonical momentum coordinates.
Then (2) yields the following equation of motion:

dqi

dt
= pi

dpi

dt
= −qi. (9)

These equations predict the position and the velocity at any time if the initial conditions
qi(t0), pi(t0) = q̇i (t0) are known. The phase space in this case is R

2n, which is a symplectic
manifold with the canonical structure given by

ω =
∑

i

dqi ∧ dpi.
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This has an associated Poisson structure, which for smooth functions f, g on R
2n is defined

by

{f, g} = (∇f, J∇g) =
∑

i

∂f

∂qi

∂g

∂pi

− ∂f

∂pi

∂g

∂qi

. (10)

With respect to this Lie bracket {, } the subspace over R generated by the functions
H = 1

2

∑
i

(
q2

i + p2
i

)
, the coordinates qi, pi and 1 form a solvable Lie algebra of dimension

2n+ 2, which is a semidirect extension of the Heisenberg Lie algebra spanned by the functions
qi, pi, 1, i = 1, . . . , n. In fact they obey the following non-trivial rules

{qi, pi} = 1 {H, qi} = −pi {H,pi} = qi.

In order to simplify notations let us rename these elements identifying Xn+1 with H,Xi with
qi, Yi with pi and X0 with the constant function 1 and set g denotes the Lie algebra generated
by these vectors with the Lie bracket [·, ·] derived from the Poisson structure. This Lie algebra
is known as an oscillator Lie algebra.

Consider the splitting of g into a vector space direct sum g = g+ ⊕ g−, where g± denote
the Lie subalgebras

g− = span{X0, Xi, Yj }i,j=1,...n, g+ = RXn+1. (11)

Note that g− is isomorphic to the (2n + 1)-dimensional Heisenberg Lie algebra we denote
hn.

The quadratic form on g which for X = x0(X)X0 +
∑

i (xi(X)Xi +yi(X)Yi)+xn+1(X)Xn+1

is given by

f (X) = 1

2

∑
i

(
x2

i + y2
i

)
+ x0xn+1

induces an ad-invariant metric on g denoted by 〈 , 〉. Canonical computations show that the
gradient of f at a point X is

∇f (X) = X.

The restriction of the quadratic form to v := span{Xi, Yj } i, j = 1, . . . , n, coincides with
the canonical one on R

2n � v. In other words the Lie algebra g is the double extension of R
2n

with the canonical metric by the skew symmetric linear map which acts on v as the restriction
of ad(Xn+1) to this space (see, for instance, [M-R] for the double extension procedure).

The metric induces a decomposition of the Lie algebra g into a vector subspace direct
sum of g⊥

+ and g⊥
−, where

g⊥
− = span{X0} g⊥

+ = RXn+1 ⊕ span{Xi, Yj }i,j=1,...,n,

and it also induces linear isomorphisms g∗
± � g⊥

∓. Let G denote a Lie group with Lie algebra g

and G± ⊂ G is a Lie subgroup whose Lie algebra is g±. Hence the Lie subgroup G− acts on
g⊥

+ by the ‘coadjoint’ representation, which in terms of U− ∈ g− and V ∈ g⊥
+ the infinitesimal

action of g− on g⊥
+ is

ad∗
U−V = xn+1(V )

∑
i

(yi(U)Xi − xi(U)Yi). (12)

It is not difficult to see that the orbits are 2n-dimensional if xn+1(V ) �= 0 and furthermore
V and W belong to the same orbit if and only if xn+1(V ) = xn+1(W), hence the orbits are
parametrized by the xn+1-coordinate; so we denote them by Mxn+1 . They are topologically
like R

2n. In fact Mxn+1 = G− · V � Hn/Z(Hn), where Hn denotes the Heisenberg Lie group
with centre Z(Hn).
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Equip these coadjoint orbits with the canonical symplectic structure. That is

ωY (Ũ−, Ṽ−)= 〈Y, [U−, V−]〉= xn+1(Y )

n∑
i=1

(xi(U−)yi(V−)− xi(V−)yi(U−)) U−, V− ∈ g−.

Indeed, on the orbit M1 the coordinates xi, yj , i, j = 1, . . . , n, are the canonical symplectic
coordinates and one can identify this orbit with R

2n in a natural way.
Consider H, the restriction to a orbit Mxn+1 of the function f . Since f is ad-invariant the

Hamiltonian system of H = f|Mxn+1
reduces to

dx

dt
= [xn+1Xn+1, xv + xn+1Xn+1] x(0) = x0 (13)

where x0 = x0
v + x0

n+1X0 and x0
v = ∑

i

(
x0

i Xi + y0
i Yi

)
.

For xn+1 ≡ x0
n+1 ≡ 1, this system is equivalent to (9).

The trajectories x(t) with coordinates xi(t), yj (t), x0
n+1 are parametrized circles of angular

velocity x0
n+1, for all i, j , that is,

xi(t) = x0
i cos

(
x0

n+1t
)

+ y0
i sin

(
x0

n+1t
)

yj (t) = −x0
j sin

(
x0

n+1t
)

+ y0
j cos

(
x0

n+1t
)

xn+1(t) = x0
n+1.

This solution coincides with that computed in the previous section, when we considered
systems on coadjoint orbits. In fact, it can be written as

x(t) = Ad
(
exp tx0

n+1Xn+1
)
x0,

and one verifies that the flow at the point X0 ∈ g⊥
+ is

	t(X0) =
∑

i

[(
x0

i cos
(
x0

n+1t
)

+ y0
i sin

(
x0

n+1t
))

Xi +
(−x0

i sin
(
x0

n+1t
)

+ y0
i cos

(
x0

n+1t
))

Yi

]
+ x0

n+1Xn+1. (14)

System (13) is a Lax pair equation L′ = [M,L] = ML − LM , taking L and M to be the
following matrices for ωi = 1 for all i:

M =




0 xn+1ω1 0 0 0 0
−xn+1ω1 0 0 0 0 0

0 0 0 xn+1ω2 0 0
0 0 −xn+1ω2 0 0 0

. . .
...

...

0 xn+1ωn 0 0
0 −xn+1ωn 0 0 0

0 0 . . . 0 0
0 0 . . . 0 0




L =




0 xn+1ω1 0 0 x1

−xn+1ω1 0 0 0 y1

0 0 0 xn+1ω2 x2

0 0 −xn+1ω2 0 y2

. . .
...

...

xn+1ωn 0 xn

−xn+1ωn 0 0 yn

− 1
2y1

1
2x1 − 1

2y2
1
2x2 . . . − 1

2yn
1
2xn 0 0

0 0 0 0 . . . 0 0 0 0




.
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Next we shall prove the complete integrability of the function H, which is the restriction
to the orbits Mxn+1 of the quadratic form associated with the ad-invariant metric on g. We shall
show a set of n-functions that are in involution. However, they are not Ad-invariant; hence
they do not satisfy conditions of theorem (2.1) and theorem (2.3) does not hold in this case.

Definition 2.5. Recall that a function f on a 2n-dimensional Poisson manifold (M, {, }) is
completely integrable if there exist n functions f1, . . . , fn such that:

(i) {f, fi} = 0, {fi, fj } = 0 for all 1 � i, j � n;
(ii) the differentials df1, . . . , dfn are linearly independent on a open set invariant under the

flow of Xf .

The Poisson structure on the orbits Mxn+1 is derived from the symplectic structure. Thus
for a pair of functions f, g : g → R the Poisson bracket of their respective restrictions F,G

at any point X ∈ g⊥
+ is given by

{F,G}(X) = 〈X, [∇f−(X),∇g−(X)]〉.
Consider Hi = fi |Mxn+1

to be the restrictions to an orbit Mxn+1 of the functions

fi(X) = 1
2

(
x2

i + y2
i

)
+ x0xn+1 for i = 1, . . . n. (15)

The functions fi are not ad-invariant but their restrictions commute with respect to the Poisson
bracket induced by the Lie–Kirillov–Kostant symplectic form on the orbit. Moreover, we
assert

Proposition 2.6. The function H is completely integrable on the orbits Mxn+1 for all xn+1 �= 0.

Proof. To prove this we first need to compute the gradient of fi which is ∇fi(X) =
xiXi + yiYi + x0X0 + xn+1Xn+1.

Since [∇fi(X),∇fj (X)] = 0 for all i, j, then Hi,Hj Poisson commute on the orbits. In
fact for X ∈ g⊥

+

{Hi,Hj }(X) = 〈X, [∇fi−(X),∇fj −(X)]〉 = 0

where V− denotes the projection of V ∈ g with respect to the splitting g = g+ ⊕ g−. One
can verify that the differentials dfi are linearly independent at any point and one proves the
Poisson commutation with H, {H,Hi} = 0 for all i. �

The set

Nxn+1 = ∩n
i=1{X ∈ Mxn+1 : Hi(X) = ci}

= ∩n
i=1

{
X =

∑
i

(xiXi + yiYi) + xn+1Xn+1 ∈ Mxn+1 : x2
i + y2

i = ci

}

is compact and nonempty for ci � 0 for all i. Thus the Liouville theorem applies
and so it is possible to construct action angle coordinates, which can be written as
(H1, . . . , Hn, θ1, . . . , θn) where θi are the angle variables on the torus Nxn+1 . In particular, the
flow XH in coordinates (H1, . . . , Hn, θ1, . . . , θn) is linear.

Remark 2.7. Let g : g → R be the quadratic polynomial of g given by g(X) = 〈AXv, Xv〉v,
where A is symmetric with respect to 〈 , 〉v. Simple computations show that the gradient of g

has the form ∇g(X) = AXv for X ∈ g. Let H = g|Mxn+1
be the restriction of g to the orbit, then

following (5) the Hamiltonian system for H is x ′ = [x+, Axv] = xn+1adXn+1Axv = xn+1JAxv,
where x is a curve on a orbit x(t) ⊂ Mxn+1 ⊂ g⊥

+ for all t. This Hamiltonian system is not
a Lax pair equation. In the following section we shall consider a realization of this system
like (2) as a Lax pair equation.
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3. Quadratic Hamiltonians and coadjoint orbits

In this section we shall prove that Hamiltonian systems corresponding to quadratic
Hamiltonians in R

2n of the form H(x) = 1
2 (Ax, x), where A is a symmetric map, can be

described using the scheme of the previous section on a solvable Lie algebra. First we shall
study the construction of solvable Lie algebras admitting an ad-invariant metric. We prove
that quadratic Hamiltonians in R

2n of the form (1) can be extended to a quadratic function
on a solvable Lie algebra. This is the quadratic corresponding to an ad-invariant metric on
the Lie algebra. These Lie algebras are semidirect extensions of the Heisenberg Lie algebra.
Secondly we shall equip these solvable Lie algebras with an ad-invariant metric, on which
we see the coadjoint orbits of the Heisenberg Lie group. On these orbits we realize the
Hamiltonian systems corresponding to the quadratic of the ad-invariant metric. In this way
the Hamiltonian system becomes a Lax equation, whose solution can be computed with the
help of the adjoint map in the solvable Lie group. Finally we discuss involution conditions for
a class of functions on these coadjoint orbits.

3.1. The structure of solvable Lie algebras admitting an ad-invariant metric

Let g denote a Lie algebra endowed with an ad-invariant metric 〈 , 〉, that is, 〈 , 〉 : g × g → R

is a non-degenerate symmetric bilinear form satisfying

〈[x, y], z〉 + 〈y, [x, z]〉 = 0 for all x, y, z ∈ g. (16)

Examples of real Lie algebras admitting an ad-invariant metric are the semisimple ones
equipped with its Killing form B: B(x, y) = tr(adxady), where ‘tr’ denotes the trace and
ad : g → End(g) is the adjoint representation.

If G is a connected Lie group with Lie algebra g then the pseudo-Riemannian metric on
G obtained by left translations is also right invariant, or equivalently Ad-invariant.

Lie algebras provided with an ad-invariant metric can be obtained in the following way.
Let (b, ϕ) be an orthogonal Lie algebra and let S be a skew symmetric derivation of (b, ϕ).
Consider the vector space direct sum RZ ⊕ b ⊕ RT and equip this vector space with the
following Lie bracket:

[z1Z + B1 + t1T , z2Z + B2 + t2T ] = ϕ(SB1, B2)Z + [B1, B2]b + t1SB2 − t2SB1

where zi, ti ∈ R, i = 1, 2, B1, B2 ∈ b. The metric 〈 , 〉 on g = RZ ⊕ b ⊕ RT obtained as an
orthogonal extension of ϕ, that is given by 〈 , 〉b×b = ϕ and 〈Z, T 〉 = 1 allows to extend ϕ to
an ad-invariant metric on g. The Lie algebra (g, 〈 , 〉) is called the double extension of (b, ϕ)

by (R, S).
It can be proved that any solvable Lie algebra g endowed with an ad-invariant metric 〈 , 〉

is a double extension of a solvable Lie algebra with an ad-invariant metric (b, ϕ) by R with a
certain skew symmetric derivation S (see [M-R], for instance).

The first examples of this method to get solvable Lie algebras with ad-invariant metrics
follow from R

m endowed with a non-degenerate symmetric form b. This b can be written as

b(X, Y ) = (AX, Y ) with A being symmetric with respect to ( , ),

where ( , ) is the canonical inner product on R
m. Moreover, b is non-degenerate if and only if

A is non-singular.
Assume that m = 2n. Then the quadratic form corresponding to b takes the form (1).

Let S be a linear transformation on R
2n. It is skew symmetric with respect to b, that is,

b(SX, Y ) = −b(X, SY ) if and only if (ASX, Y ) = −(AX, SY ).
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If we apply the double extension procedure to (R2n, b) by S we get the solvable Lie
algebra g = RZ ⊕ R

2n ⊕ RT with the Lie bracket

[z1Z + B1 + t1T , z2Z + B2 + t2T ] = (ASB1, B2)Z + t1SB2 − t2SB1.

Clearly RZ ⊕ R
2n is a nilpotent ideal with a one dimensional commutator, hence g is a

semidirect extension of a Heisenberg Lie algebra hm/2. Furthermore m/2 = n if and only if
AS is non-singular. This says that if A is injective, any non-singular skew symmetric map for
b gives rise to a derivation of hn acting trivially on the centre.

We shall prove a correspondence between the symmetric maps A in R
2n and the derivations

of the Heisenberg Lie algebra acting trivially on the centre.
If we fix the inner product on hn defined in example (2.1) (denoted 〈 , 〉′) then the Lie

bracket on hn = RX0 ⊕ v where R
2n � v = span{Xi, Yj }i,j=1,...,n can be expressed as

〈[X, Y ], x0X0〉′ = x0〈JX, Y 〉′ with J as in (2)

and note that 〈 , 〉′|v×v = ( , ). A derivation D of hn acting trivially on the centre must satisfy
[DU,V ] = −[U,DV ] for all U,V ∈ v. Equivalently in terms of 〈 , 〉′, we have that a map D
in hn is a derivation acting trivially on the centre of hn if and only if the restriction of D to v

(denoted also D) satisfies

(JDU,V ) = −(JU,DV ) for all U,V ∈ v,

where we replaced 〈 , 〉′v by ( , ) since they coincide on v � R
2n. Denote by d the set of

derivations on hn acting trivially on the centre of hn.

Theorem 3.1. There is a bijection between the set of derivations of hn acting trivially on
the centre and the set s of symmetric linear maps on R

2n. Explicitely this correspondence is
given by the linear isomorphism ψ , which applies D ∈ d → JD ∈ s, where J is the complex
structure as in (2).

Moreover, one can see that if A is a symmetric map on R
2n then JA is always a skew

symmetric map with respect to the bilinear map defined by b(X, Y ) = (AX, Y ).

Proof. Let D be an element of d, then JD is symmetric with respect to the canonical inner
product on R

2n. In fact (JDU,V ) = −(JU,DV ) since D is a derivation of hn and the
assertion follows since J is skew symmetric for ( , ). For the converse let A be a symmetric
transformation relative to ( , ). Define a map D on hn by D = JA on v and extend it trivially
to the centre. It is easy to see that D is a derivation of hn.

To prove the second assertion let A be a symmetric map on R
2n. Then we have

b(JAX, Y ) = (AJAX, Y ) = −(AX, JAY) = −b(X, JAY). �

Thus for any non-singular derivation D of d there always exists a symmetric non-
degenerate bilinear form on R

2n with respect to which D is skew symmetric. This is given by
b(X, Y ) = (JDX, Y ).

In the following section we shall apply this result to realize quadratic Hamiltonians on
R

2n on coadjoint orbits of the Heisenberg Lie group.

3.2. Quadratic Hamiltonians on coadjoint orbits of the Heisenberg Lie group

In this section we shall realize quadratic Hamiltonians of R
2n (as in (1)) on coadjoint orbits

of the Heisenberg Lie group, which are included in a solvable Lie algebra admitting an
ad-invariant metric. The corresponding Hamiltonian systems can be written as a Lax pair
equation and the solution can be computed with the help of the Adjoint map. Finally we
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shall prove involution conditions for a class of functions on these coadjoint orbits in terms of
commutativity on the Lie algebra of derivations of hn.

Consider a linear system of one degree of freedom on R
2n with Hamiltonian given by

H(x) = 1
2 (Ax, x)

where x = (q1, . . . , qn, p1, . . . , pn) is a vector in R
2n written in a symplectic basis and A is

a symmetric linear operator with respect to the canonical inner product ( , ). This yields the
following Hamiltonian equation,

x ′ = JAx, with J =
(

0 −Id

Id 0

)
(2)

and Id the identity. The phase space for this system is R
2n. We shall construct a solvable

Lie algebra that admits an ad-invariant metric on which the system (2) can be realized as a
Hamiltonian system on coadjoint orbits. Moreover, it can be written as a Lax pair equation.

Assume that A is non-singular and let b denote the bilinear form on R
2n =

span{Xi, Yj }ni,j=1 given by b(X, Y ) = (AX, Y ). According to the previous section, JA

is skew symmetric with respect to b, where J is the canonical complex structure on R
2n as

above. Let g denote the double extension of (R2n, b) by (R, JA), that is g = RX0 ⊕v⊕RXn+1

with v = R
2n, where the Lie bracket is given by the non-trivial relations

[U,V ] = b(JAU, V )X0 [Xn+1, U ] = JAU for all U ∈ v, (17)

which can be equipped with the ad-invariant metric defined by〈
x1

0X0 + U 1 + x1
n+1Xn+1, x

2
0X0 + U 2 + x2

n+1Xn+1
〉 = b(U 1, U 2) +

(
x1

0x2
n+1 + x2

0x
1
n+1

)
. (18)

Thus if 〈 , 〉v denotes the restriction of the metric of g to v = span{Xi, Yj }i,j=1,...,n, then it
coincides with the non-degenerate symmetric bilinear map b of R

2n and g admits an orthogonal
splitting g = span{X0, Xn+1} ⊕ v.

Let g± denote the Lie subalgebras

g+ = RXn+1, g− = RX0 ⊕ span{Xi, , Yi}.
Clearly they allow the splitting of g into a vector space direct sum g = g+ ⊕ g−, which via the
ad-invariant metric induces the following decomposition g = g⊥

+ ⊕ g⊥
−, direct sum as vector

spaces, where

g⊥
− = RX0 g⊥

+ = span{Xi, Yi}i=1,...,n ⊕ RXn+1.

Indeed g− is an ideal of g isomorphic to the (2n + 1)-dimensional Heisenberg Lie algebra hn.
If G denotes a Lie group with Lie algebra g, set G− ⊂ G the Lie subgroup with Lie

subalgebra g−. Then G− acts on g⊥
+ by the coadjoint action

g− · X = πg⊥
+
(Ad(g−)X)g− ∈ G−, X ∈ g⊥

+ ,

where πg⊥
+

denotes the projection of g on g⊥
+ , which in infinitesimal terms gives the following

action of g− on g⊥
+ :

ad∗
UV := U · V = xn+1(V )JAXv(U) for U ∈ g−, V ∈ g⊥

+ , (19)

where Xv(U) denotes the projection of U onto v with respect to the orthogonal splitting
g = span{X0, Xn+1} ⊕ v. The orbits are 2n-dimensional if xn+1(V ) �= 0 and furthermore
V and W belong to the same orbit if and only if xn+1(V ) = xn+1(W), and this allows to
parametrize the orbits by the xn+1-coordinate; so we denote them by Mxn+1 . The orbits
are topologically like R

2n since they are diffeomorphic to the quotient Hn/Z(Hn), where
Z(Hn) = RX0.
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Endow the orbits with the canonical symplectic structure of the coadjoint orbits, that is,

ωX(Ũ−, Ṽ−) = 〈X, [U−, V−]〉 = xn+1(X)b(JAUv, Vv)

for X ∈ g⊥
+ , U−, V− ∈ g−.

Let f : g → R be the ad-invariant function given by f (X) = 1
2 〈X,X〉. The gradient of

the function f at a point X is the position vector ∇f (X) = X. Since f is ad-invariant the
Hamiltonian system of H = f|Mxn+1

, the restriction of f to the orbit Mxn+1 , is given by (6), so
we have

dx

dt
= [∇f+(x), x] = [xn+1Xn+1, xv + xn+1Xn+1] = xn+1JAxv x(0) = X0, (20)

where X0 ∈ g⊥
+ . This Hamiltonian system written as a Lax pair equation is equivalent to (2)

for xn+1 = x0
n+1 = 1. The solution for the initial condition X0 ∈ g⊥

+ can be computed with the
help of the Adjoint map on G. In fact it can be written as

X(t) = Ad
(
exp tx0

n+1Xn+1
)
X0.

The previous explanations prove the following result.

Theorem 3.3. Let H(X) = 1
2 (AX,X) be a quadratic Hamiltonian on R

2n with corresponding
Hamiltonian system (2). Then H can be extended to a quadratic function f on a solvable Lie
algebra g containing the Heisenberg Lie algebra as a proper ideal. The function f induces a
Hamiltonian system on coadjoint orbits of the Heisenberg Lie group, which can be written as
a Lax pair equation and which is equivalent to (2). Moreover, the trajectories on R

2n for the
initial condition V 0 can be computed with the help of the Adjoint map on g. Explicitly they
are the curves x(t) = exptJA V 0, where exp denotes the usual exponential map of matrices.

Remark 3.3. The Lie algebra g above is isomorphic to the Lie algebra of real functions on
R

2n under the Poisson bracket generated by qi, pj , 1 and the Hamiltonian H.

Example 3.4 (the motion of n-uncoupled inverse pendula). As an example of the previous
construction consider the linear approximation of the motion of n uncoupled inverse pendula.
This corresponds to the Hamiltonian H(x) = 1

2 (Ax, x), where

A =
(

Id 0
0 −Id

)
.

This yields the Hamiltonian system x ′ = JAx, which in coordinates takes the form

dqi

dt
= pi

dpi

dt
= qi. (21)

The phase space for this system is R
2n. By considering the setting above we construct

coadjoint orbits M of the Heisenberg Lie group, which are included in a solvable Lie algebra
g with the Lie bracket (17) and ad-invariant metric (18). The Hamiltonian system for the
restriction to the orbits of the ad-invariant function on g induced by the metric can be written
as

dx

dt
= [xn+1Xn+1, xv + xn+1Xn+1] x(0) = X0 (22)

where X0 = ∑
i

(
x0

i Xi + y0
i Yi

)
+ x0

n+1Xn+1. This is in fact a Lax pair equation. If we identify
the coordinates qi with xi and pi with yi then the Hamiltonian system above on the coadjoint
orbit M1 written in coordinates is clearly equivalent to (21).
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The trajectories on g⊥
+ , x = ∑

i (xi(t)Xi + yi(t)Yi) + xn+1Xn+1 are parametrized by

xi(t) = x0
i cosh

(
x0

n+1t
)

+ y0
i sinh

(
x0

n+1t
)

yi(t) = x0
i sinh

(
x0

n+1t
)

+ y0
i cosh

(
x0

n+1t
)

xn+1(t) = x0
n+1

One can verify that the flow at the point X0 ∈ g⊥
+ is then

	t(X0) =
∑

i

[(
x0

i cosh
(
x0

n+1t
) − y0

i sinh
(
x0

n+1t
)
Xi

+
(
x0

i sinh
(
x0

n+1t
)

+ y0
i cosh

(
x0

n+1t
)
Yi

]
+ x0

n+1Xn+1. (23)

System (22) is a Lax pair equation L′ = [M,L] = ML − LM , taking L and M to be the
following matrices in M(2n + 2, R) with ωi = 1:

M =




0 xn+1ω1 0 0 0 0
xn+1ω1 0 0 0 0 0

0 0 0 xn+1ω2 0 0
0 0 xn+1ω2 0 0 0

. . .
...

...

0 xn+1ωn 0 0
0 xn+1ωn 0 0 0

0 0 . . . 0 0
0 0 . . . 0 0




L =




0 xn+1ω1 0 0 x1

xn+1ω1 0 0 0 y1

0 0 0 xn+1ω2 x2

0 0 xn+1ω2 0 y2

. . .
...

...

xn+1ωn 0 xn

xn+1ωn 0 0 yn

− 1
2y1

1
2x1 − 1

2y2
1
2x2 . . . − 1

2yn
1
2xn 0 0

0 0 0 0 . . . 0 0 0 0




Remark 3.5. Orbits isomorphic to R
2n correspond to a particular class of unitary irreducible

representations of the Heisenberg Lie group, which are known to be connected with quantum
mechanics. The one-point orbits produce one-dimensional representations that are related to
classical mechanics in the context of p-mechanics in the observation that their union naturally
acts as the classical phase space [Ki1]. Moreover, it is possible to derive the time evolution of
both quantum and classical mechanics observables from the time evolution of p-mechanical
observables (see [Ki2, Br2]).

Next we shall prove the complete integrability (2.5) of the function H with system (22).
We shall show a set of n-functions that are in involution. As in the case of the n-uncoupled
harmonic oscillators they are not Ad-invariant, hence they do not satisfy conditions of
theorem 2.1 and theorem 2.3 does not hold in this case.

Consider Hi = fi |Mxn+1
be the restrictions to a orbit Mxn+1 of the functions

fi(X) = 1
2

(
y2

i − x2
i

)
for i = 1, . . . , n (24)
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The functions fi are not ad-invariant but their restrictions Poisson commute on the orbit.
Moreover, we assert

Proposition 3.6. The function H is completely integrable (in the sense of (2.5)) on the orbits
Mxn+1 for all xn+1 �= 0.

Proof. The proof follows from an analogous procedure as in (2.6). �

However, in this case the set

Nxn+1 = ∩n
i=1{X ∈ Mxn+1 : Hi(X) = ci}

= ∩n
i=1

{
X =

∑
i

(xiXi + yiYi) + xn+1Xn+1 ∈ Mxn+1 : x2
i + y2

i = ci

}

is not compact.

Remark 3.7. If g(4) denotes the four dimensional Lie algebra of the example above, the
connected Lie group G = exp g is called the Boidol group.

Motivated by the involution conditions proved in the equation of motion of both systems
corresponding to n-uncoupled harmonic oscillators and n-uncoupled inverse pendula, we shall
investigate involution conditions on the coadjoint orbits of the Heisenberg Lie group for the
restrictions of the quadratic functions f (X) = 1

2 〈X,X〉, where 〈 , 〉 denotes the ad-invariant
metric on the solvable Lie algebra g.

Let gi, gj be two quadratic on R
2n associated with symmetric maps Ai,Aj : v → v

respectively, that is,

gi(X) = 1
2 (AiX,X) gj (X) = 1

2 (AjX,X).

Consider the quadratic functions on the solvable Lie algebra g, which are extensions of gi, gj

to RX0 ⊕ RXn+1, for instance as

gi(X) = 1
2 (AiXv, Xv) + x0xn+1 gj (X) = 1

2 (AjXv, Xv) + x0xn+1.

For the following results these extensions are not unique. For instance, extending them trivially
we get the same conclusions.

Let Hi,Hj denote the restrictions of gi, gj to the orbits Mxn+1 and let X ∈ Mxn+1 ⊂ g⊥
+ .

The Poisson bracket of the functions Hi,Hj on the orbit follows:

{Hi,Hj }(X) = 〈X, [∇gi−(X),∇gj −(X)]〉.
Thus we need to compute the gradients of gi, gj , which are

∇gi(X) = A−1AiXv + x0X0 + xn+1Xn+1 ∇gj (X) = A−1AjXv + x0X0 + xn+1Xn+1.

In theorem (3.1) we established a correspondence between the symmetric maps on R
2n and

the derivations of hn acting trivially on the centre, given by ψ which sends A → JA, where
J is the canonical complex structure on v and JA is extended trivially to the centre of hn.

Theorem 3.8. The functions Hi,Hj are in involution on the orbits Mxn+1 if and only if

[ψ(Ai), ψ(Aj )] = 0. (25)

Proof. Let X ∈ Mxn+1 ⊂ g⊥
+ . Then for the functions Hi,Hj the Poisson bracket on the orbit

follows:

{Hi,Hj }(X) = 〈X, [AiXv, AjXv]〉 = 〈xn+1[Xn+1, A
−1AiXv], A−1AjXv〉

= xn+1〈JAiXv, A−1AjXv〉 = xn+1(JAiXv, AjXv).
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Therefore {Hi,Hj }(X) = 0 if and only if (AjJAiXv, Xv〉 = 0 which is equivalent to
AjJAi = AiJAj , if and only if JAjJAi = JAiJAj . Since ψ(A) = JA we proved the
result. �

Corollary 3.9. If there exists an n-dimensional abelian subalgebra on z(JA)d, where

z(JA)d = {D ∈ d such that [D, JA] = 0}
then the Hamiltonian function H restriction of the function f (X) = 1

2 (AX,X) is completely
integrable on the orbits Mxn+1 for xn+1 �= 0.

Proof. The previous theorem says that the restrictions to the orbit Mxn+1 of the functions
gi, gj are in involution if their corresponding derivations commute in d. In particular for gi

and f , we have that H and Hi Poisson commute on the orbit if and only if JAi belongs to
the centralizer of JA in d, z(JA)d. Since the complete integrability requires of n linearly
independent functions, this can be done with a basis of an n-dimensional abelian subalgebra
of z(JA)d, finishing the proof. �

Thus using Lie theory we can say that many of these systems are completely integrable.
In fact the Lie algebra of derivations of hn acting trivially on the centre is sp(n) (see [Sa]),
which has a Cartan decomposition of the form sp(n) = u ⊕ p, where u is a maximal compact
subalgebra. Taking for instance any element in u, then it induces a completely integrable
system. More generally we should study the abelian subalgebras on sp(n).

Example 3.10. [involution on the oscillators] Note that whenever we choose A = Id as the
symmetric map for H in (1), and we apply the double extension procedure we get the oscillator
Lie algebra g endowed with its Lorentzian ad-invariant metric. Let H denote as above the
restriction to the coadjoint orbits of the function induced by the metric. Reading the previous
proposition in this situation we have that

{H,Hi} = 0 if and only if ψ(Ai) belongs to the Lie subalgebra of isometries of Hn fixing
the identity and acting trivially on the centre.

In fact the Lie algebra of the isometries of Hn fixing the identity is the set of skew
symmetric derivations of hn, that is, those derivations satisfying 〈Du, v〉′ = −〈u,Dv〉′, where
〈 , 〉′ is the canonical inner product on Hn as in (2.1). The previous results says that Hi Poisson
commutes with H if and only if AiJ = JAi . But JAi can be identified with a derivation D of
hn acting trivially on the centre and (JAi)

t = −AiJ = −JAi , that is, D is skew symmetric,
and this proves our assertion.

Explicitly, let J : v → v denote the canonical complex structure of R
2n defined as (2)

in the introduction. Note that by identifying R
2n with v as isometric vector spaces then J

coincides with the restriction of adXn+1 to v in the oscillator Lie algebra g. The restriction to
the orbit of a quadratic g(X) = 〈AX,X〉 with a symmetric map A : v → v of the form(

B C

D E

)
Poisson commutes with H the restriction of the quadratic induced by the metric on g if and
only if C = −D and B = E, where B is also symmetric. That is, the matrix A seen as a linear
map on R

2n is complex and symmetric. Assume now that the restrictions of two quadratic
functions gi, gj associated with symmetric maps Ai,Aj are in involution with H. Then they
pairwise Poisson commute if and only if [Ci, Bj ] = [Cj , Bi] and [Ci, Cj ] = [Bi, Bj ] for all
i, j, where [·, ·] is the canonical Lie bracket for matrices: [A,B] = AB − BA.

In particular, the functions Hi defined as the restrictions to the orbit Mxn+1 of the functions
fi(X) = 1

2

(
x2

i + y2
i

)
+ x0xn+1 as in (15) are examples of the quadratic functions above.
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4. Conclusions

We constructed Hamiltonian systems on coadjoint orbits of the Heisenberg Lie algebra. This
was done with Lie theory as a powerful tool to study the dynamic of the systems. In fact the
corresponding Hamiltonian system were written in a Lax form and involution conditions for
a class of functions are related to the Heisenberg Lie algebra. This work shows examples of
applications of the Adler–Kostant–Symes scheme on solvable Lie algebras. This allows us to
ask for new examples, a more general theory for Poisson commutativity and applications to
quantum mechanics.
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t. 18 391–404

[O1] Ovando G 2002 Estructuras complejas y sistemas Hamiltonianos en grupos de Lie solubles Tesis Doctoral
Fa.M.A.F. Univ. Nac. de Córdoba (Marzo)
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